3.1525 \(\int \frac {x^9}{\sqrt {1+x^8}} \, dx\)

Optimal. Leaf size=62 \[ \frac {1}{6} x^2 \sqrt {x^8+1}-\frac {\left (x^4+1\right ) \sqrt {\frac {x^8+1}{\left (x^4+1\right )^2}} F\left (2 \tan ^{-1}\left (x^2\right )|\frac {1}{2}\right )}{12 \sqrt {x^8+1}} \]

[Out]

1/6*x^2*(x^8+1)^(1/2)-1/12*(x^4+1)*(cos(2*arctan(x^2))^2)^(1/2)/cos(2*arctan(x^2))*EllipticF(sin(2*arctan(x^2)
),1/2*2^(1/2))*((x^8+1)/(x^4+1)^2)^(1/2)/(x^8+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {275, 321, 220} \[ \frac {1}{6} x^2 \sqrt {x^8+1}-\frac {\left (x^4+1\right ) \sqrt {\frac {x^8+1}{\left (x^4+1\right )^2}} F\left (2 \tan ^{-1}\left (x^2\right )|\frac {1}{2}\right )}{12 \sqrt {x^8+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^9/Sqrt[1 + x^8],x]

[Out]

(x^2*Sqrt[1 + x^8])/6 - ((1 + x^4)*Sqrt[(1 + x^8)/(1 + x^4)^2]*EllipticF[2*ArcTan[x^2], 1/2])/(12*Sqrt[1 + x^8
])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^9}{\sqrt {1+x^8}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x^4}{\sqrt {1+x^4}} \, dx,x,x^2\right )\\ &=\frac {1}{6} x^2 \sqrt {1+x^8}-\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+x^4}} \, dx,x,x^2\right )\\ &=\frac {1}{6} x^2 \sqrt {1+x^8}-\frac {\left (1+x^4\right ) \sqrt {\frac {1+x^8}{\left (1+x^4\right )^2}} F\left (2 \tan ^{-1}\left (x^2\right )|\frac {1}{2}\right )}{12 \sqrt {1+x^8}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 34, normalized size = 0.55 \[ \frac {1}{6} x^2 \left (\sqrt {x^8+1}-\, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-x^8\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^9/Sqrt[1 + x^8],x]

[Out]

(x^2*(Sqrt[1 + x^8] - Hypergeometric2F1[1/4, 1/2, 5/4, -x^8]))/6

________________________________________________________________________________________

fricas [F]  time = 0.91, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {x^{9}}{\sqrt {x^{8} + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^9/(x^8+1)^(1/2),x, algorithm="fricas")

[Out]

integral(x^9/sqrt(x^8 + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{9}}{\sqrt {x^{8} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^9/(x^8+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^9/sqrt(x^8 + 1), x)

________________________________________________________________________________________

maple [C]  time = 0.14, size = 30, normalized size = 0.48 \[ -\frac {x^{2} \hypergeom \left (\left [\frac {1}{4}, \frac {1}{2}\right ], \left [\frac {5}{4}\right ], -x^{8}\right )}{6}+\frac {\sqrt {x^{8}+1}\, x^{2}}{6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^9/(x^8+1)^(1/2),x)

[Out]

1/6*(x^8+1)^(1/2)*x^2-1/6*x^2*hypergeom([1/4,1/2],[5/4],-x^8)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{9}}{\sqrt {x^{8} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^9/(x^8+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^9/sqrt(x^8 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {x^9}{\sqrt {x^8+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^9/(x^8 + 1)^(1/2),x)

[Out]

int(x^9/(x^8 + 1)^(1/2), x)

________________________________________________________________________________________

sympy [C]  time = 0.97, size = 29, normalized size = 0.47 \[ \frac {x^{10} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {x^{8} e^{i \pi }} \right )}}{8 \Gamma \left (\frac {9}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**9/(x**8+1)**(1/2),x)

[Out]

x**10*gamma(5/4)*hyper((1/2, 5/4), (9/4,), x**8*exp_polar(I*pi))/(8*gamma(9/4))

________________________________________________________________________________________